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Abstract 

The correction method for weak diffraction of Bethe 
[Ann. Phys. (Leipzig) (1928), 87, 55-129] is applied 
to dynamical calculation of reflection high-energy 
electron diffraction (RHEED) intensities from gen- 
eral surfaces based on a multi-slice method. For high- 
step-density surfaces, it is shown that the corrected 
surface potential (Bethe potential) depends on the 
incident direction of electrons for step directions. 
Furthermore it is shown that the Bethe potential is 
approximately proportional to the coverage of adsor- 
bed atoms or of terraces of high-step-density surfaces. 
For the RHEED intensity from stepped surfaces, the 
intensity oscillation during molecular beam epitaxial 
growth is discussed. An appropriate calculational for- 
mula for reconstructed surfaces is also obtained. 

1. Introduction 

Practical methods of reflection high-energy electron 
diffraction (RHEED) intensity calculation were pro- 
posed by several theoretical studies (Masud & 
Pendry, 1976; Maksym & Beeby, 1981; Ichimiya, 
1983; Peng & Cowley, 1986). These methods are 
appropriate to perfect crystal surfaces, but most of 
the methods are not available for imperfect surfaces. 
The first theoretical formalism for imperfect surfaces 
was presented with a perturbation method by Beeby 
(1979). Peng & Cowley (1986) proposed a new 
method for calculating RHEED intensities which 
would allow the calculation of intensities from imper- 
fect surfaces. Electron diffraction intensity distribu- 
tions from imperfect surfaces were interpreted using 
kinematic diffraction theory by several authors 
(Matysik, 1974; Henzler, 1977; Holloway & Beeby, 
1978; Holloway, 1979; Van Hove, Lent, Pukite & 
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Cohen, 1983; Lent & Cohen, 1984; Pimbly & Lu, 
1985; Pukite, Lent & Cohen, 1985). Recently some 
theoretical approaches were proposed to interpret 
RHEED intensity oscillations (Van Hove, Lent, 
Pukite & Cohen, 1983; Kawamura, Maksym & Iijima, 
1984; Kawamura & Maksym, 1985; Ichimiya, 1987). 
In a previous paper (Ichimiya, 1987) RHEED 
intensities from a surface with low step densities were 
obtained analytically from Kirchhoff's diffraction 
theory. From the calculations it was shown that 
integrated intensities of RHEED scarcely depend on 
the step distributions and terrace coverage, but the 
intensities on reciprocal rods depend sensitively on 
these factors. Kawamura & Maksym (1985) have 
shown that the oscillation property of RHEED 
intensities during molecular beam epitaxial (MBE) 
growth depends on crystal orientation and the step 
directions for the incident beam because of dynamic 
diffraction effects. In their calculation dynamic 
diffraction as high density and periodic distribution 
of steps was taken into consideration. 

In the present work Bethe's correction method 
(Bethe, 1928; Ichikawa & Hayakawa, 1977) for weak 
beams in the dynamical theory of electron diffraction 
was applied to calculation of RHEED intensities from 
general surfaces such as stepped, reconstructed, 
distorted or adsorbed surfaces based on the multi- 
slice method (Ichimiya, 1983). 

2. Bethe's correction for general surfaces 

According to the multi-slice method of RHEED 
dynamical theory (lchimiya, 1983), the Schr6dinger 
equation at the jth slice parallel to the surface is 
expressed by a two-dimensional (2D) position vector 
r and a 2D wave vector ko, which are parallel to the 
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surface, as 

(V2+ k2o)6~(r) + Vj(r)6j(r) = 0, (1) 

where 6j(r) is a 2D wave function and Vj(r) a 2D 
potential multiplied by 2me~ h 2 at the j th slice. For 
a 2D periodic potential field, V(r) and 6(r) (hereafter 
the suffix j is removed for simplicity) can be expanded 
in Fourier series 

V(r) =Y. U, exp (iBnr) (2) 
n 

6(r) = ~  ~p, exp (ik, r) (3) 
rl  

where B, is a 2D reciprocal-lattice vector (reciprocal- 
rod vector) and 

k .  = ko + B . .  (4) 

Substituting (2) and (3) into (1), one obtains a set of 
homogeneous equations for the 2D periodic field as 

(k2o - 2 k,)q~, + Y. U,_,. q~,,, = 0. (5) 
m 

For a nonperiodic potential, (2) and (3) are rewritten 
a s  

V(r) = .[ U(s) exp (isr) ds (6) 

~b(r) : j" q~(s) exp [i(ko+s)r] ds 

= ~ q~(s) exp (iks r) ds. (7) 

Upon substitution of (6) and (7) into (1), the set of 
equations for the nonperiodic potential field becomes 

(ko2- k~)q~(s) +~ U ( s -  s')~C(s') ds' = 0. (8) 

When the 2D potential field is slightly distorted from 
a periodic one, U(s) can be written as 

U(s) = Y. U,, ,6(s-Bm)+AU(s) ,  (9) 
n l  

where 6(s) is Dirac's 6 function and AU(s) is a term 
of the distortion from the periodic potential field 
which gives rise to weak diffuse scattering. Substitut- 
ing (9) into (8), we obtain 

(k2-  k2)q~(s) +~] U,,,q~(s- B,,,) + J AU(s-s')q~(s') ds' 
m 

= 0 .  

When we put q~(B.)=~o, for s = B . ,  the above 
equation becomes 

(k2-  k2.)q~. +Y U._,.q~,. +~ AU(B.-s ' )q~(s ')  ds' 
m 

=0. (10) 

From (8), 

J U(s-s')~o(s') ds' 
q~(s) = 2 2 (11)  

ko-  k.~ 

Since dynamical diffraction occurs predominantly 
between the waves diffracted into reciprocal rods, 

q~(s') in (11) is put approximately equal to 

~(s') = E ~ a ( s ' -  Hr.). 
n l  

Then (11) becomes 

Em U(s-Bm)~m 
~(s)=  k2o_k2 s (12) 

Substituting (12) into (10) and using (8), we obtain 

(k~- 2 k,,)q~, 

+ ~ [ u o  _m _ f ,~u(B,,-s) ,~U(s-B,,,)k2o_k 2 
q 

ds] q~r. = 0, 

(13) 

because AU(B, -Bin) = 0. When we put 

u'o = uo_m j 
A U ( B . - s )  AU(s -Bm)  

-,1 - -5  --;-~ ds, (14) 
ko-k~  

(13) is reduced to the same formalism as (7) for a 
periodic potential as 

(k2-kZ,)q~,+~. U',_,, q~,, = 0. (15) 
m 

U" is named the 2D Fourier component of the Bethe 
potential, because the second term of (14) is an effect 
of diffuse scattering. Thus RHEED intensities of 
reciprocal rods for general surfaces can be calculated 
from (15) by the usual methods of RHEED dynamical 
theory (Maksym & Beeby, 1981; Ichimiya, 1983). 

3. Bethe  potent ia l  for s tepped and adsorbed surfaces  

A Fourier component of the 2D potential for stepped 
or adsorbed surfaces is 

U(s) = E  u(s)Sj(s)exp(isrj) ,  (16) 
J 

where u(s) is the 2D atomic scattering factor, rj the 
2D original position vector of thej th  terrace or island, 
and 

Sj(s)  : Y. exp  [ is(rk -- rj)] ,  
k 

which is the shape function of thej th  terrace or island, 
and rk is  the 2D position vector of the kth atom. For 
a completely flat surface, 

U(B,) = U , =  Nou(B,),  (17) 

where No is the number of atoms in the surface. For 
stepped or adsorbed surfaces, where atoms are at 
correct lattice sites, 

U(B.)  = E u(B.)Sj(Bo) 
J 

= E  u (B,,) N;, (18) 
J 

where Nj is the number of atoms in the j th terrace 
or island. If the terrace or island coverage 0 r is defined 
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as Oj= N/ No, 
U(B,,) = ~ OjU,,=OU,,, (19) 

J 

where 0 = ~ j  0j is total coverage of terraces or islands. 
From (19), the Bethe potential  U'._,. becomes 

u'_,. = ou._,. - [ aU(B.  -s )  AU(s-  B,.) ds. 
k o- k] 

(20) 
where 

AU(s) = Z  u ( s ) S j ( s ) e x p ( i s r j ) - O  ~, U . 6 ( s - B . ) .  
j n 

(21) 

For the one-d imens ional  step distr ibutions treated 
by Kawamura  & Maksym (1985), (20) becomes 

U ' ~ _ , , , = O U . _ m + ~ [ d U ( B . - s )  A U ( S - B r , , ) ] / S  2 ds, 
(22) 

when the incident  beam is parallel  to the step edge, 
ko_Ls; and 

f A U ( B n - s )  A U ( S - B m )  
U ' . _ m = O U . _ , . +  2ko s + s 2 ds, 3 

(23) 

when the incident  beam is perpendicular  to the step 
edge, ko[[s. Since the Bethe potential  depends  on the 
incident directions as (22) and (23), R H E E D  intensity 
oscil lation behaviour  during MBE growth is expected 
to differ with direction as was shown by Kawamura ,  
Sakamoto & Ohta (1986). The second term of (22) 
becomes very small  for a high-step-density surface, 
because 2ko s becomes very large. Therefore the Bethe 
potential for such a high-densi ty stepped surface is 
approximate ly  given as V ' ( r ) =  0V(r), as pointed out 
by Kawamura  & Maksym (1985). On the other hand,  
al though the second term of  (20) becomes significant 
for low-step-density surfaces, in such cases the treat- 
ment  by Kirchhoff 's  diffraction theory is effective as 
described by Ichimiya (1983). 

4. Bethe potential for reconstructed surface 

For reconstructed surfaces, many  fract ional-order 
spots are observed in the R H E E D  pattern. Therefore 
many beams for dynamica l  calculat ion are required 
to be taken into account,  and the calculations involve 
long CPU times of  a computer.  The Bethe correction 
method is also appropria te  to such reconstructed 
surfaces. 

For reconstructed surfaces, a Fourier  component  
of  the 2D potential  can be written as 

U ( s ) = ~  Um~(Bm-s)+~ U, 6 ( B , - s ) ,  (24) 
rr l  n 

where suffix m is for integral-order reflections and n 
is for fract ional-order ones. Substituting (24) into (14) 
we can obtain the Bethe potential  

~ U._,Ut_,. 
U ~ _ , . = U , , _ . , -  k ~ _ k  2 , 

Un-I UI-m V" U.-r~ 
+LF'~ 2kBl+  B~' 

(25) 

where the summat ion  is performed for fractional 
orders. The second term of  (25) is appreciable  for the 
zeroth Laue zone, because kBt = 0. For the other Laue 
zones the second term becomes very small  because 
of  the large dominator ,  including large wave number.  
Therefore in the many-beam dynamical  calculation,  
we have to take only the zeroth-Laue-zone reflections 
into account. 

Thus, the use of the present Bethe correction 
method allows dynamical  diffraction effects of  frac- 
t ional-order reflections on rocking curves of  integral- 
order reflections to be est imated without numerous  
computat ions.  
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